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A numerical procedure is described for the solution of the Vlasov-Poisson system 
of equations in two and three phase-space variables. In this approach the distribution 
function is represented over a computational mesh. Time integration is done by ad- 
vancing the distribution in real phase space as in finite difference methods. However, the 
derivatives with respect to all the phase-space variables are computed by finite Fourier 
transform methods. Truncation errors are principally due to time discretization, and are 
controlled by the choice of the time step. As for the phase-space variables, the accuracy 
of the computation is determined by the harmonic content of the distribution function, 
since contributions due to coupling between Fourier modes are computed with high 
accuracy. The numerical method has been tested on linear and nonlinear problems, and 
our results agree remarkably well with those obtained from the Fourier-Hermite 
method. However, for comparable overall accuracy, the present method is about ten 
times more efficient (CPU time) than theFourier-Hermite method in some of the examples 
discussed in this paper. 

I. INTg00U0~10~ 

It has been found that the Accurate Space Derivative (ASD) method is well suited 
to the numerical solution of certain time-dependent partial differential equations 
[l-6]. In this numerical approach the functions are represented over some compu- 
tational grid. The integration with respect to the time t is based on a Taylor series 
in t. Expressions containing space derivative-terms are then substituted for the 
time derivatives. The accurate computation of these space derivative terms is done 
effectively by the use of finite Fourier transform techniques. This approach to 
computing the space derivative terms results in numerical schemes which are 
substantially more accurate than existing finite difference methods [7]. 

In this paper we describe a method of numerical solution for the Vlasov- 
Poisson system of equations based on the ASD principle. We consider a scheme 
of third order in time for a problem with one spatial dimension and two velocity 
dimensions. We demonstrate the feasibility and accuracy of our numerical method 
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through numerical experiments related to linear and nonlinear Landau damping. 
These results are compared with those obtained by the Fourier-Hermite method 
[8, 91. To test the numerical scheme for a computer plasma with an externally 
applied constant magnetic field, we study stable longitudinal electron waves 
propagating perpendicularly to the magnetic field [lo, II]. Sharp peaks in the 
frequency spectrum define the frequencies of these oscillations [12, 131. These 
frequencies compare well with those obtained from the linear theory for small 
amplitude waves. 

II. THE NONLINEAR VLASOV EQUATION 

The system of equations under consideration consists of the Vlasov equation 
for the electron distribution f(x, v, , U, , t) [ 141 

and the Poisson equation for the electric field E, 

aE 
ax= 

1 - jfdvzdvV. 

These equations are written in dimensionless units. The basic units of time t and 
velocity v are the reciprocal of the plasma frequency (w&l and the mean thermal 
velocity vt , respectively. Length x is measured in units of the Debye length. The 
cyclotron frequency w, is specified in units of wp . 

For computing purposes the distribution function f can be represented con- 
veniently either in a rectangular or in a cylindrical coordinate system. We have 
programmed Eqs. (1) and (2) in both coordinate systems following essentially the 
same numerical method in each. For the rectangular case the computational domain 
R was set to be 

R = 0, co , v,)l 0 d x -=c x0 , I v, I G 00 7 I 0, I G vol. (3) 

In the cylindrical coordinate system the computational domain was defined as 

c = Kx, v, $8 I 0 G x < x0, I v I < UC , 0 < 4 < 24, (4) 

where 
v = (vz2 + vy2)1/2 (5) 

and 
I) = tar+(v&J. (6) 
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The free-streaming (E = 0) solution of Eq. (1) corresponds to a uniform rotation 
of f(x, u, , 0,) in the (u, - UJ plane and a displacement along X. Consequently, 
the cylindrical coordinate system has some advantages over the rectangular one. 
If a rectangular mesh were used to represent the (u, - Us) plane, the mesh points 
outside the largest circle that could be inscribed in the rectangle would be wasted. 
The representation off by a cylindrical mesh also results in stability conditions 
more favorable than those of a rectangular mesh. 

In this paper we shall consider solution methods developed for the cylindrical 
coordinate system. The Vlasov equation expressed in terms of the phase-space 
variables x, U, and rj reads 

~+ocos~~-E(cos~~-~~)+o af=o, c a4 (7) 

and the Poisson equation for the electric field E takes the form 

aE 
- = 1 - ax s fv dv d+. (8) 

The velocity plane is represented by the computational mesh shown in Fig. 1. 
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FIG. 1. Computational mesh for the vekcity plane. 
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No mesh point was placed at the origin since this would have inconvenienced 
the computation of the term 

in Eq. (7). Instead, the mesh was designed such that the smallest velocity associated 
with any mesh point is AU/~. 

III. THE NUMERICAL METHOD 

The numerical approach to be described here is based on the principles of the 
ASD method [l]. The electron distribution is advanced by approximating 
f(x, v, c#, t + At) fromf(x, v, 4, t) by means of the expression 

(9) 

where p is the order of the method. We shall only be concerned with third-order 
schemes, i.e., p = 3. The time derivatives in Eq. (9) are obtained from Eq. (7) by 
successive differentiation: 

a af aE af sin 95 af - %qzi-,, cos+&-yy ( 1 

?f sin 4 a ay- -= 
at3 

-v cos t$ & $< + E (cos 4 2 g - 7 _ - a+ at2 ) 

(11) 

The derivatives with respect to the phase-space variables x, v, and 4 are computed 
by using finite Fourier transform methods [l]. For example, let F(F(k, v, 4, t) be 
the finite Fourier transform of f(x, V, 9, t) with respect to the variable x. Then 
the partial derivative offwith respect to x is given by 

-$ = C ikF(k, v, cj, t) exp(ikx), (13) 
k 
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where i = (- 1)112 and the summation in Eq. (13) is carried out for all wave- 
numbers k which can be represented over the computational mesh without 
ambiguity. This method of computing space derivatives gives results which are 
substantially more accurate than those obtained from finite difference approxi- 
mations. 

Partial derivatives with respect to 4 are computed without any difficulty because 
of the natural periodicity in this variable. The calculation of the derivatives with 
respect to u is slightly more involved. In order to assure continuity through the 
origin (see Fig. l), the Fourier transformation is carried out over 2N, mesh points 
covering a velocity range of 2v, . This is done by concatenating samples corre- 
sponding to any + value with those whose angle is 4 + n. 

The electric field E and its time derivatives aE/at and a2E/at2 in Eqs. (lo)-(12) 
are computed by standard Poisson solver techniques fromfand its time derivatives 
aflat and a2f/at2 by the equations 

&($) = 1 -~$vJvdrj; 1=0,1,2. (14) 

IV. ACCURACY AND STABILITY 

Accuracy and stability criteria for a numerical method are often estimated by 
studying test cases which are simplified versions of physical problems which the 
numerical scheme is intended to study. Typically, truncation errors are established 
from linear tests and are expressed in terms of the wavenumber, the value of a 
uniform velocity field, and the time step of computation. Such linear analysis of 
stability and accuracy of the ASD convective schemes was described elsewhere 
[l]. The results of such analysis can also be applied to estimating the errors in 
complex nonlinear cases providing certain conditions are satisfied. These conditions 
require that: (1) the space derivatives off in Eqs. (9)-(12) be computed with high 
accuracy; and (2) the aliasing errors be negligible. The first condition is satisfied 
by the ASD method since the space differencing errors are negligibly small. The 
second condition stipulates that errors resulting from the truncation of the spatial 
frequency domain be negligible. This is equivalent to saying that all frequency 
components (in phase space) of the distribution function can be represented on the 
computational mesh without ambiguity. When this requirement is seriously 
violated, the computation breaks down [7, 151. 

The magnitude of aliasing errors depends upon the relationship between the 
frequency spectrum of the true solution and the highest frequency which can be 
supported by the computational mesh. The effect of truncation in frequency space 
is almost independent of the numerical method used. For example, the “recurrence 
of the initial state” in plasma computations, which is an aliasing phenomenon, 
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manifests itself in the same qualitative manner in different numerical methods 
[7,15, 171, including the present one. Therefore, aliasing effects will be ignored when 
the accuracy of the numerical method is considered. 

Under these assumptions, significant computational errors are due to time 
discretization only. We shall make the simplifying assumption that the time 
dependence of f(x, u, 4, t) at any point of the phase space is exp(iwt), where w 
may be real or complex, and 

w = 4% 0, 41 (15) 

in the most general case. The time derivatives offcan then be expressed as 

alfjatz = (iw)“f, (16) 
and Eq. (9) becomes 

f(x, u, 4, t + At) = i (iw)z y,, u, +, t). 
z-o 

(17) 

Since the exact solution corresponding to Eq. (17) is f(x, v, $, t) exp(iw At) 
it is apparent that the truncation error is 

E = 
[ 
exp(iw At) - i (i)” q]J 

z=o 
(18) 

By considering cases in which w is real, the error in Eq. (18) can be expressed 
conveniently as amplitude error and phase error as defined in [I]. The magnitudes 
of these error terms are shown in [l, Figs. 1,2] as functions of the true phase w dt. 

Stability conditions for a Cartesian coordinate system are described in [l]. 
This linear stability criterion specifies an upper limit (No.547 n for the third order 
method) for the change in phase angle of any Fourier component in one time step. 
In other words, the total phase change (the sum over all phase-space variables), 
for any Fourier modes which can be represented over the mesh, must be less than 
No.547 r. In order to apply the result of the linear stability analysis, which assumes 
a uniform velocity field, to a practical situation, we use the maxima of u and E 
over C (Eq. (4)), denoted by v, and E, , respectively. Similarly, we let k, , I, , 
and m, be the highest frequencies (wavenumbers) with respect to the variables 
x, v, and 4. The corresponding phase change will not exceed v,k,,, At, EJ,,, cos 4 At, 
and [(Em sin 4)/u + w,] m, At along x, u, and 4, respectively. Substituting 4 = 0 
in these expressions and letting u assume its smallest value, Avf2 (see Fig. l), 
we obtain the following requirement for stability. 

[v,,,k, + E&l, + (2m,/Av)] + w,m,] At < 0.547 TT. 

The values of k I m, m, and m, are a/Ax, r/Au, and T/A#, respectively. 

(19) 
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V. NUMERICAL RESULTS 

The numerical examples described below are intended to demonstrate the 
accuracy and efficiency of the ASD method. We first consider examples for 
unmagnetized plasma, i.e., wC = 0. In this case the three phase-space variables 
can be reduced to two since we are only interested in the 4 = 0,~ line of Fig. 1. 
Eqs. (7) and (8) become 

and 
(aflat) + u(qpx) - E(qpu) = 0 PO 

g=l-jfdv. (21) 

The equilibrium distribution is chosen to be Maxwellian, i.e., 

h(u) = (2rr)-lia exp(-iv”), 

and the initial condition for the electron distribution is set as 

(22) 

f(x, u,O) = fo(W + 01 cos kx), (23) 

where k is the wavenumber and 01 is the initial perturbation amplitude. The initial 
electric field is 

E, = cijk, (24) 

and the bounce frequency wB is given by [8]: 

WB = (+/‘. (25) 

In what follows we shall use N, , N, , and Nb to designate the number of mesh 
points used along the variables x, u, and 4 (see Fig. l), respectively. Note that 
N, refers to the velocity domain 0 < u < u, , therefore Nd is no less than 2. 

In the first example we test the time reversibility of the numerical solutions. Here 
we used N, = 8, N, = 128, and N& = 2, with u, = 5. With k = 0.5 and OL = 0.001 
the distribution is integrated forward 1000 time steps (500;~). At this point the 
sign of dt is set negative and the distribution is integrated backward. The oscillation 
frequency and damping rate obtained from the numerical output averaged over the 
peaks from t = 4.7 to t = 26.9 are w = 1.417 and -y = 0.1537, respectively. 
The exact values obtained from Landau’s dispersion equation are w = 1.416 
and -y = 0.1534. The time behavior of the first Fourier mode of the electric 
field E is shown in Fig. 2. The damping process reverses at t = 50 when dt becomes 
negative and plotting continues in the positive t direction. At t = 100, E is less 
than its initial (t = 0) value by 0.2 %. This amount of amplitude error (damping) 



84 JEN6 GAZDAG 

TIME (W;) 

FIG. 2. Electric field versus time for k = 0.5 with o( = 0.001. The sign of At is changed at 
r = 50, causing a reversal of the integration. Plotting continues in the positive t direction. 

is expected from the time differencing alone. We can see this if we calculate the 
error by the expression of Eq. (18). For small values of w At the contribution of 
the 1 = 4 term would be to correct the amplitude error of the third order method. 
This can be seen by inspecting [I, Figs. 1,2]. In our case, o = 1.417 and dt = 0.05 
for which the 1 = 4 term in (18), i.e., (o ~lt)~/4!, is ~10-~, which is approximately 
the amplitude error per time step. In 2000 At this amplitude error should accu- 
mulate to 0.2 %, as we obtain at t = 1000 in the example shown in Fig. 2. 

Figure 3 shows the time evolution of the first three Fourier modes for cy. = 0.1. 
We used iV, = 16 which allows the correct representation of at least seven spatial 
harmonics. For the velocity domain we used N, = 128 and Nd = 2 with u, = 5. 

0 20 40 60 80 100 120 140 160 

TIME (W;‘) 

FIG. 3. Electric field versus time for 01 = 0.1. (a) Main wave, k, = 0.5; (b) second Fourier 
mode, kz = 1; (c) third Fourier mode, ks = 1.5. 
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This permits an alias-free computation of the main wave for about 160 time units; 
the recurrence of the initial state would occur at 2r/k dv g 320. In order to obtain 
quantitative error estimates in this example, we compared the main wave amplitude 
with that obtained with the Fourier-Hermite method. In the latter method the 
distribution function is expanded in Fourier series in space and Hermite poly- 
nomials in velocity. This reduces the Vlasov equation to a set of first order ordinary 
differential equations. An excellent review of this method is given by Armstrong 
et al. [9]. The time for which one can study approximately collisionless phenomena 
is t = iW2/k, where M is the number of Hermite polynomials employed. A 
velocity resolution corresponding to the N, = 128 case would require 6400 
Hermite terms. 

The peak values of E obtained by these two methods agree up to three significant 
figures for t < 35. The main wave amplitude shows a minimum at about t = 56., 
the same as reported [8] by the Fourier-Hermite method. Following this minimum, 
the main wave grows, and it attains a peak at about t E 145. The second and third 
Fourier harmonics undergo a short period of damping followed by consistent 
growth. Both of these modes attain an amplitude of the same order of magnitude 
as that of the main wave around t = 140 to 160. 

The effect of a strong nonlinear perturbation, (y. = 0.5, is shown in Fig. 4 for 
k = 0.5. The computational mesh was the same as in the previous case. The main 
wave damps much more rapidly than expected from the Landau theory. It has a 

20 40 60 80 100 
TIME (W,-‘1 

FIG. 4. Electric field versus time for OL = 0.5. (a) Main wave, kl = 0.5; (b) second Fourier 
mode, k, = 1; (c) third Fourier mode, k8 = 1.5. 
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minimum at t N 15.4, which agrees well with numerical results obtained with 
finite difference methods [8]. The first mode reaches its maximum at t N 41, which 
is nearly the same as shown in [8, Fig. 91. Ntihrenberg [16] obtained this peak value 
before t = 39, whereas Knorr’s results [17, Fig. 31 show no evidence of such a 
maximum for t < 50. The second and third modes show a strong growth between 
t = 20 and 40. The third mode is saturated at t N 40 while the second mode still 
shows a mild growth for t = 40 to 90. The behavior of the second and third modes 
shown in Fig. 4 agrees qualitatively with Niihrenberg’s results [16] although in the 
present case the oscillations of the third mode show more regularity for t = 20 
to 40. 

The time evolution of the main wave shown in Fig. 4 is not in complete agreement 
with the one obtained by finite difference methods [8, Fig. 91. In the present results 
the second minimum (t = 51) and the second maximum (t = 67) of the electric 
field occur sooner, and have higher values than in the finite difference result. 
Furthermore, the second maximum at t = 67 is somewhat higher than the first 
one at t = 41. This is contrary to the finite difference results whose behavior 
is in better qualitative agreement with theoretical predictions [18, p. 691, according 
to which the amplitude of the main wave shows damped oscillatory modulation 
[18, Fig. 4.41. Since the truncation errors in finite difference methods are orders of 
magnitude larger than those in the ASD method, the most probable source of 
computational error would be due to inadequate grid resolution or roundoff. 
In order to establish whether these results were affected by such errors, we repeated 
the computations of the 01= 0.5 case with various grid sizes (NZ = 8, 16; N, = 128, 
256; and N+ = 2) using double precision arithmetic. 

We found that even with N, = 8, by setting to zero the highest spatial Fourier 
mode, k4 = 2, of the distribution function at each time step, the behavior of the 
main wave was similar to that shown in Fig. 4, which was computed with N, = 16. 
We performed another set of tests using N, = 16, N, = 128, and Nd = 2, in 
which one, three and five of the highest spatial Fourier coefficients of the distri- 
bution function were set to zero in each time step. The amplitude of the main wave 
varied only a few percent between these cases. However, the second maximum 
near t = 67 was at least 10 % higher than the first in all cases. This indicates that 
there were no appreciable aliasing effects with respect to the x variable. 

We found that the velocity resolution of the grid with N, = 128 gridpoints over 
0 < v < 5 was also adequate. When we halved Au by using N, = 256, we found 
that the amplitude of the main wave agreed with the N, = 128 case within 1% 
for t < 80. 

The above results give strong evidence that the main wave shown in Fig. 4 is 
not affected appreciably by aliasing or numerical recurrence phenomena. What 
they indicate is that, in the strong nonlinear case, the modulating envelope of the 
electric field is not always a smoothly damped oscillatory function as predicted by 
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the theoretical model based on electron trapping. This model assumes that trapped 
electrons execute oscillatory motion in the potential well of the wave, and that 
the bulk of the electrons move together in some orderly fashion. The result is a 
very smooth uniform modulating envelope as shown in Fig. 3a for 01 = 0.1. 
In the 01 = 0.5 case, however, the initial wave energy is 25 times greater than for 
LY = 0.1. Consequently, the electrons responsible for the energy exchange experience 
stronger accelerations and cannot maintain such orderly oscillations in the potential 
well as in weaker nonlinear cases. As a matter of fact, the theoretical model [18] 
was not intended to predict plasma behavior for the a! = 0.5 case, which could 
hardly be realized in a physical experiment. The reason for the surprisingly smooth 
and physically appealing behavior of the electric field obtained with finite difference 
computations can be attributed to the intrinsic dissipation and .dispersion with 
respect to both x and v variables in that method. 

In order to test the ASD method for magnetized plasma, a Maxwellian equi- 
librium electron distribution 

fo(o) = (2rr)--l exp(-$a”) (26) 

was chosen, and the intial condition was set to be 

f(x, u, $3 0) = mxl + 01 cm w, (27) 

where k is the wavenumber of the longest wave. The perturbation amplitude was 
set as OL = 0.001. 

The time behavior of the electric field amplitude is characterized by steady, 
undamped oscillations. These oscillations are not monochromatic, because of the 
presence of several modes, so that the E vs time plots are not very informative. 
The sequence of the first Fourier coefficients of E over 4096 time steps was Fourier 
transformed with respect to 1. An example of the so-obtained spectrum is shown in 
Fig. 5. The locations of the peaks correspond to frequencies of the Bernstein modes 
for waves propagating perpendicularly to the magnetic field [IO, 111. Computer 
simulation by means of particle models of such Cyclotron Harmonic Waves has 
been reported [12, 131. In both cases the results were the fluctuation spectra of the 
computer plasma. In the present case, however, the waves are the result of the 
initial conditions (27) with no significant amount of noise present. The positions 
of the peak values in Fig. 5 agree with those predicted by small amplitude perturb- 
ation theory [lo, 111 within 1%. 

The computations were carried out on an IBM System 360/Mad 195 computer. 
The results presented here were obtained by using simple precision arithmetic. 
Double precision was also used to test against roundoff error. The speed of com- 
putation is nearly the same in both single and double precision on this computing 
system. The nonlinear examples shown in Fig. 3 and 4, using 4098 grid points 
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FIG. 5. Spectrum of electrostatic oscillations in a magnetized plasma. 

(N, = 16, N, = 128, and Nb = 2) required 0.39 set of computation (CPU time) 
per time step. For example, the 01 = 0.1 case shown in Fig. 3 required, with 
dt = 0.05, approximately 21 min of CPU time. 

VI. CONCLUSIONS 

We have described a numerical procedure, based on the ASD method, for the 
solution of the Vlasov-Poisson system of equations in two and three phase-space 
variables. The time integration of the distribution function is performed in real 
phase-space as in the case of ordinary finite difference methods. However, the 
derivatives with respect to the phase-space variables are computed by Fourier 
methods. As a result, phase-space derivatives are accurate within the limit to which 
a function can be defined over a finite set of mesh points. Hence, truncation errors 
are small and can be controlled by the choice of the time step dt. 

We have given some examples to demonstrate the precision of this numerical 
method. From the linear Landau damping example with time reversal at t = 50, 
we have seen that space differencing errors are practically nonexistent, i.e., no 
significant amount of information is lost in the process of computing the partial 
derivatives with respect to phase-space variables. It has been shown that the 0.2 % 
error in the initial amplitude after 100 time units (2000 At) is roughly the same as 
one expects due to time differencing alone. The results of the nonlinear examples 
are in very good agreement with those obtained from the Fourier-Hermite method 
up to the time limit of validity of the latter method. However, the cost of compu- 
tation with the third order ASD method is only one-tenth of that with the Fourier- 
Hermite method for similar overall accuracy. 
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